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The Calibration of a Roundness Standard

by

Charles P. Reeve

1. Introduction

The Dimensional Metrology Group of the National Bureau of Standards
has been making roundness measurements for many years. In some of the

measurements a high level of precision is not needed. This usually
occurs for objects such as cylinders, spheres, and ring gages where
roundness is not the parameter of primary importance. In these cases it

is routine to make a single trace with a roundness measuring instrument
whose output is a polar graph. Much literature has been devoted to the

interpretation of data taken in this form.

When calibrating objects which are to be used solely as roundness
standards, such as hemispheres, a higher level of precision is called
for. During the last decade a measurement algorithm has been used at

NBS which is unlike any thus far found in the literature. It involves
making several traces of the roundness standard (also referred to as the
"workpiece") where the standard is rotated between traces. A least
squares analysis is performed on the resulting measurements enabling the
noncircularity in the spindle to be separated from the profile of the
standard

.

The primary purpose of this paper is to present a detailed descrip-
tion of the mathematical model for this particular measurement process.
Certain related topics are discussed briefly. A method of graphically
displaying the roundness profile is described and an example is given.
Topics not discussed because of their availability in the literature are
effects of stylus type, alignment of stylus, alignment of workpiece, and
effects of imperfect centering.

2. Preliminaries

2.1. Roundness Measuring Instruments

There are two basic types of high precision roundness measuring
instruments. One type has a high precision spindle which carries a

sensitive indicator (stylus) around the circumference of the workpiece
which is held stationary. The other type has a high precision turntable
which rotates the workpiece against a stylus which is held stationary.
NBS currently has both types of instruments.
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2.2. The Polar Graph

The output in most roundness calibrations is a polar graph. The
roundness profile of the workpiece is transferred to the graph as the
surface of the workpiece deflects the stylus. The continuous trace
represents the radial deviations of the workpiece from the center of

rotation of the spindle. Included in the trace are the deviations from
circularity of the path of the spindle. The magnification factor exag-
gerates the profile in the radial direction, but the angular positions
on the graph retain the same relationship as on the workpiece itself.

In some cases the output of a roundness trace consists not of a

polar graph but of a set of n numbers which represent the radial devia-
tions of the workpiece at n equally spaced points around the circum-
ference. This is equivalent to a polar graph except that the trace con-
sists of a discrete number of points instead of a continuous curve.

Whether discrete or continuous, the trace may be interpreted in

several ways as described in the following section.

2.3. Methods of Determining Roundness

There are several ways to assign numerical "roundness" values to the

workpiece from its polar graph. One way is to draw either the minimum
circumscribing circle or the maximum inscribed circle and state the
maximum departure from one or the other. Another way is to draw the pair
of concentric circles which enclose the graph and have the minimum
radial separation. This separation is then a measure of the "out-of-
roundness". Examples of the above are illustrated in some of the
references [2,5,8,10].*

A slightly more sophisticated approach is to fit a "least squares
circle" (LSC) to the graph. The LSC is fit through an integral number
of equally spaced points on the curve rather than through the entire
curve. The maximum deviation from the LSC is then another measure of the

"out-of-roundness" of the workpiece.

The following derivation of the equations for the LSC is a summary
of the more rigorous derivations given in several of the references

[2,5,7,10,11].

Consider a polar graph given in a rectangular coordinate system as
shown in figure 2.1. Let point 0 be the center of rotation of the spindle
and y^ be the distance from 0 to point P on the curve at the angular
position 0^. Let point (a,b) be the center of the LSC and R be the
radius of the LSC. Let c 2 = a 2 + b 2 and tan a = b/a. Then the triangle
between points 0, P, and (a,b) has the relationship

y ± = [(R+A^)2 - c^sin^(0^-a) + c cos (0^-a)
(2-1)

*Figures in brackets indicate literature references listed at the end of

this paper.
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DETERMINATION OF LEAST SQUARES CIRCLE

Figure 2.1

3



where A_^ is the deviation of point P from the LSC.

Since c is many orders of magnitude less than R (in a well centered

trace), the term c 2 sin 2 (0^-a) can be neglected, thus

y. = R + c cos(0.-a) + A. . (2-2)
’l 11

Since a = c cosa and b = c sina this expression can be expanded to give

y. = R + c cos0 . cosa + c sin0 . sina + A. ,
(2-3)

; i i ii
or

y . R + a cos0 . + b sin0 „ + A

„

J ± l ii (2-4)

Let {0_^, i=l,n) be n equally spaced angles. Then the sum of squares of

n
the deviations, ^ A2

,
is minimized by the usual method of least squares

i=l

to give the following estimates for the LSC parameters:

-i
n

i = i L y.n f—' y
i

1=1

= — £ y .cos0 .

n f—L
J i i

i=l

and (2-5)

n
= V y . sm0 .

n t-*
J i i

i=l

The deviations A^ are given by A-j_ = y^ - R - a cos0^ - b sin0^
where i=l,n.

( 2 -6 )

When roundness values are assigned from a single graph, as in the
above cases, the graph contains both the workpiece profile and the spindle
profile. In a precision instrument the spindle error is usually small
and within known limits and can be ignored except when the most precise
measurements are needed.

There are currently two methods available for removing spindle error
at the cost of making multiple traces. One method requiring two traces
is given by Donaldson [4] for use on a turntable-type instrument. Between
traces the workpiece and stylus positions are rotated 180° while the
shaft and housing positions remain the same. If both graphs are recorded
on the same chart the true workpiece profile is obtained by drawing a
third graph halfway between the two. Though well suited for a turntable-
type instrument, this method is not easily adapted to a spindle-type
instrument

.
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The other method of removing spindle error is the main topic of

this paper. It requires several polar graphs and works equally well on

either type of instrument. A detailed discussion of this method as

applied to a spindle-type instrument is given in the following sections.

3. Procedure for Taking Data

The workpiece should be centered as well as possible under the

spindle. The mark on the workpiece which donotes the zero angular posi-
tion is aligned with the zero position of the spindle as shown in figure
3.1. A trace is made with the workpiece in this position. The workpiece
is then rotated clockwise by 360/n degrees as shown in figure 3.2 and
another trace is made. This process is continued until n traces have
been made. The value of n is arbitrary but is usually at least 4. Note
in the above figures that the zero spindle position is shown pointing
"south". This convention was arbitrarily chosen for the current measuring
instrument

.

It is important to record the angle <5 between the lever arm of the

stylus and the tangent to the workpiece at the point of contact. This
angle can usually be set to 0° for a sphere, hemisphere, or cylinder as

shown in figures 3.3, 3.4, and 3.5 respectively. If an obstruction
exists, as shown in figure 3.6, then the angle must necessarily be greater
than 0°. The correction for 5 assures that the profile of the workpiece
will be measured normal to the point of contact. A sphere is normally
measured about its equator. A hemisphere is measured as nearly to the

base as possible without the stylus being obstructed. A cylinder is

measured at some specified distance above its base.

If the output of the instrument is a polar graph for each trace of

the workpiece, then the observer should measure the radial distance (in

polar graph units) from the center of each graph to the curve at each of

the n angular positions and record the values on the graphs at the proper
places. The graphs should be numbered from 1 to n and the scale factor
(K) of the instrument should be noted on at least one of them.

4. Mathematical Model

4.1. Parameters

Let the n angular positions on the circumference of the workpiece be

numbered counterclockwise from 1 to n beginning with the 0° position.
Let the angular positions of the spindle be similarly numbered without
regard to the direction in which the spindle rotates. The i^ angular
position is then denoted by

0 .

x

360(i-l)
n

degrees
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PROBE POSITIONS FOR 4 TYPES OF STANDARDS

Sphere Hemisphere

8 = 0 °

Figure 3.3 Figure 3.4

Cylinder

8 = 0 °

1

3

1

:

Figure 3.5

Cylinder (with cap)

8 > 0 °

Figure 3.6
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where i=l,n. Let the deviations from the LSC of the workpiece at the 0_^

position be given by a . , and let the deviation of the spindle from its

th
LSC at the

0_^
position be given by B^. For the j graph let the three

parameters which define the LSC on the gr aph be given by R_.
,

a_. ,
and b_.

(see equation 2-4) . In an idealized measurement system these parameters

would be constant for all j. In reality, though, each rotation of the

workpiece causes it to shift a small amount vertically and horizontally.

To account for this shifting, separate parameters are needed for each

trace.

Let y.. be the observed distance (in polar graph units) from the
il

th
center of the j graph to the point on the curve which corresponds to

the 0^ position of the spindle . Let K be the magnification factor of

the measuring instrument given in (micro inches/polar graph unit)*, and
let z . . be given by

1

1

z . . = (K cos6) y . .

il il

for i=l,n and j=l,n. The z..’s are then the observations to be used in

the mathematical model.
1~1

4.2. Measurement Equations

The measurement equations take the form

z.. = a.,. - B . + R. + a.cos0. + b.sinO. +
il i+l-l il 1 il i il

where the e.. are independent error values from a distribution with mean
il

zero and variance a 2
. (The subscript of a is reduced modulo n.) Let

z (zn ... z
nl

z
12

a = (a, ... a )
’ ,

1 n

In
z )*
nn 9

B = (B
1

... 3
n )

f

,
(4-1)

<j) = (R_ a_ b_ . . . R a b )
'111 nun

e = (e.
11 nl 12

* •

’ n2
* *

In
’ ‘ e )

’ ,
and

nn

*Customary U.S. units are used in this report rather than the recognized
metric (SI) units. The well established ongoing calibration procedures
described here employ customary units exclusively. The conversion to SI

units will be made at a future time..
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P° -I A 0 0

P
1

-I 0 A 0

X =

P
n X

-I 0 0 A

(4-2)

where ' denotes matrix or vector transposition, and P is the n x n

permutation matrix given by

P
1

0 10
0 0 1

0 0 0

10 0

0 0
“

0 0

0 1

0 0

(4-3)

I is the nxn identity matrix, and A is the nx3 matrix given by

1 cos6^ sin0^

1 cosQ^ sin02

(4-4)

1 cos0 sin0
L n nj

(Note that P° = p
n

= I.) The measurement equations can then be written
in the matrix form

z X

A
+ e (4-5)

4.3. Restraints

2
The n by 5n system given above has no unique least squares solution

because the restraints which were arbitrarily set on a and 6 (that they
be deviations from least squares circles) have not yet been included in

the model. These are included by adding the six equations

n n n

y a. =
1

V a. cos0
1 1

X
i=l

sin0 .

x
0

and

9
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E
i=l

n

- E
i=l

$ . COS0
n

T, 3 . sinG .
= 0

i-1
1

to the model. In matrix notation the restraints take the form

A’a = A'B = 0 (4-7)

where A is defined as in equation 4-4.

4.4. Method of Solution

The model can now be solved by the method of restrained least
squares [3]

.

The least squares estimation takes the form

where

E(z)

Var(z) = a 2 I.

(4-8)

The normal equations (incorporating the six restraints) take the form

A 0

X'X o A

0 0

A' 0 0 0 0

0 A' 0 0 0

(4-9)

where X = (X^ X . .

.

V are Lagrangian multipliers entering in the mini-

mization process. The least squares estimates of the unknowns are given
by

a A 0
-1

B 0

8 X'X 0 A X'z C 0 B X'z

V = 0 0 = D E

A' 0 0 0 0 0 B' 0 D' 0 0 0

X 0 A’ 0 0 0 0 0 B' E' 0 0 0

where C is the variance-covariance matrix of the estimates. The predicted
values of the observations are given by
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z = X (4-11)

and the deviations by

d = z = z (4-12)

The estimate of a is given by

= T d / (n^ - 5n + 6 ) (4-13)

and the standard deviation of the estimates by

s~ = +lc . . s and ss = A /C
~

. . s
a. \ li \ n+i,n+i (4-14)

4.5. Simplified Expression of Results

The matrix of normal equations and its inverse, both given in equa-

tion 4-10, can be written more specifically as

nl -J P
n
A • • • P

1
A A 0

-J nl -A • • • -A 0 A

A'P
1

-A' A'A 0 0 0

A tA’P -A’ 0 A’A 0 0

A’ 0 0 . . . 0 0 0

0' A’ 0 0 0 0

and
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to

0 0 0 AQ
o

0

0 i(I-AQ
0
A ') 0 » • • 0 0

o
oc

0 0
o

o

•

0 A o
o

0 0 0

•

•

o
o i

—

i

01
o

o

<
o

O' 0
o

01 0 • • -Vi 0 0

0 QqA
'

°0 • • •

o
o 0 0

\ = (A’P^)"
1

. The expressions for the estimates can be reduced

n n

a
t

- £ Z
j=l k=l

t
k-i+j+n

z, . 9kJ

n n

6
x

-5=1 V=1
t
k-i+l-fn

z
i

• >kJ

n

R.
3 k=l 'KJ

’
(4-15)

n
i. = - T
J n

k=i
z, . cos0, , and
kj k

n
b. = - Vz,.
3 n « k3

sin0.

k=l

where

t =
m

n-3

n
if m=l, and

- 1
„ (1 + 2 cos0 ) if 2<m<n
L m

(4-16)

12



(The subscripts of t are reduced modulo n.) The standard deviation of

the profile estimates is given by

/n-3
(4-17)s s

a .

1
n

for i=l,n.

5. Sources of Error

Some known sources of error in roundness measurement are:

(1) horizontal and vertical fluctuations of spindle path from one

trace to the next,

(2) variability due to stylus type,

(3) nonuniformity of polar graphs on which traces are recorded, and

(4) variability in observer's interpolation of trace position on

polar graph.

These errors are assumed to accumulate in a random fashion and thus are
included in the estimate of the standard deviation.

In the measurement of roundness it is particularly useful to have a

graph of the measured profile. The n values obtained from the previously
described method of calibration can be plotted on a polar graph to give
an indication of the shape of the workpiece. This graph can be enhanced
by connecting the points with a smooth curve. One good method of doing
this involves the use of periodic cubic spline functions. Let the set

of points {(0^,a^), i=l,n+l} represent the profile of the workpiece in

rectangular coordinates where 0 . .. = 0 + 0 O and a = a- as shown in

figure 6.1. In each of the intervals ® jq-q) >
i=l,nj- a cubic poly-

nomial is fit to the points subject to the condition that the cubic
between 0. . and 0. must agree with the cubic between 0. and 0.., at 0.

i-1 i
6 i i+l i

in their first and second derivatives. Similarly, the cubic between 0^

and 0 O must agree with the cubic between 0 and 0 ... at 0, and 0 _ .

2
6 n n+1 1 n+1

The last requirement makes the spline periodic.

6. Graphical Display of Roundness Profile

13



RECTANGULAR GRAPH OF ROUNDNESS PROFILE

ANGLE —*

Figure 6.1

POLAR GRAPH OF ROUNDNESS PROFILE

Figure 6.2
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The resulting equations form a system of 3n equations in 3n unknowns
which is tridiagonal except for nonzero elements in the upper right and
lower left hand corners of the associated matrix. In the current computer
program the equations are formulated by extending the method given in

UNIVAC [12] for a nonperiodic cubic spline. The resulting equations are
then solved by the method given in Ahlberg [1] for a periodic spline.
Once the coefficients of the n cubics are obtained the interpolated value
at a given 0q is determined by plugging the value of 0q into the appro-
priate cubic. The rectangular* graph is then transformed to a golar graph
by plotting the set of points { (p+a_^, 0 ^) , i=l ,n} where p+cu is the distance

from the origin and
0_^

is the angle (see fig. 6.2). The parameter p is

an arbitrary constant. Note that 0 ^
is identical to 0^ on the polar

graph.

7 . Example

A glass hemisphere designated L9474 was measured on a spindle-type
instrument. Twelve traces were made with the hemisphere rotated 30°

between each trace. The radial distances y.. (in polar graph units)
were recorded at 30° intervals on each trace"1 as shown in figure 7.1. The

scale factor was determined to be K = 5.56 micro inches/unit and 6 was
approximately 0°. The true radial distances z_^_. = (K cos6) y_ where

i=l,n and j=l,n were computed. Then using equations 4-15 and 4-16 the

estimates of the unknown parameters were computed as given in figure 7.2.

(Note also the standard deviation values.) The profile of the hemisphere
was plotted by the computer as shown in figure 7.3.^ The small signs

indicate the values of the least squares estimates a. for i=l,12 relative
to the dotted circle (outward is +) . In this example interpolated values
were computed at 720 equally spaced points. The values were connected
by straight lines, but due to their closeness they give the appearance
of a smooth continuous curve. The estimates R.

,
a., and b. are omitted

J 3 1

because they are normally not of interest. The total uncertainty of each

profile value was taken to be the three standard deviation limit for

random error

.

8. Conclusion

The data reduction process is now fully computerized and incorporates
the simplified expressions for the estimates given in equations 4-15 and
4-16. The output includes the usual Report of Calibration plus a plot of

the computed roundness profile.

The strong point of this method of roundness measurement is that it

allows the spindle error to be separated from the workpiece profile while
giving an estimate of the measurement precision. It should be used when-
ever the desired level of precision is so great that the out-of-roundness
of the spindle path becomes significant.
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Observed Values of

i ii
1^ 2 3 4 5 6 7 8 9 10 11 12

1 8.1 6.9 6.7 5.3 7.5 6.9 5.6 7.2 7.0 7.8 7.2 7.2

2 7.2 6.8 6.2 5.1 7.4 6.7 5.4 7.1 6.9 7.8 7.2 6.3

3 6.

6

6.8 6.0 5.1 7.2 6 .

3

5.3 6.9 6.8 7.3 7.1 6.0

4 6.1 6.7 6.0 5.1 7.0 5.9 5.4 6.3 6.8 6.9 7.0 5.7

5 5.6 6.2 6.2 5.2 6.8 5.7 5.6 6.0 6.9 6.2 7.1 5.4

6 5.5 6.0 6.8 5.3 6.5 5.5 5.8 5.8 7.0 5.7 7.1 5.5

7 5.8 5.7 7.4 5.4 6.5 5.6 6.0 5.7 7.3 5.4 7.1 5.9
8 6.3 5.6 7.9 5.6 6.7 6.0 6.2 5.8 7.6 5.3 7.0 6.2

9 6.9 5.8 8.0 5.6 6.8 6.0 6.1 5.9 7.7 5.3 7.0 6.9

10 7.7 6.0 8.0 5.7 7.0 6.4 6.0 6.2 7.3 6.0 7.0 7.0
11 8.3 6.3 7.8 5.5 7.2 6.8 5.9 6.7 7.2 6.5 7.0 7.3

12 8.5 6.8 7.3 5.3 7.3 6.9 5.7 7.0 7.0 7.1 7.0 7.2

K = 5.56 microinches/polar chart unit
5 = 0°

Figure 7.1

Least squares estimates of profiles

(micro inches)

Position

(ap

Hemisphere
«i>

Spindle

0° .14 -.48
30° -.25 .10
60° -.15 .10
90° .07 .04

120° .21 .12

150° -.06 .05

180° .02 -.15
210° -.01 -.30
240° -.20 .11
270° .09 .26
300° .00 .09
330° .13 .06

Std

.

dev. of residuals = .50 micro inch
Std

.

dev

.

of estimates = .13 micro inch
certainty of estimates = .38 micro inch

Figure 7.2
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-.800 -

- 1.000 -

- 1.200 -

-1.400 -

-1 600 -

-1.800 -

- 2.000

- 2.000
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